首頁(yè)>>>技術(shù)>>>CRM  CRM產(chǎn)品

 

使用數(shù)據(jù)采集,建立有利可圖的客戶(hù)關(guān)系

胡俊 2001/06/05

如果你已經(jīng)建立了客戶(hù)信息和市場(chǎng)的數(shù)據(jù)倉(cāng)庫(kù),現(xiàn)在你該如何使用數(shù)據(jù)倉(cāng)庫(kù)中的數(shù)據(jù)?CRM幫助企業(yè)提高他們與客戶(hù)相互作用的收益;與此同時(shí),企業(yè)通過(guò)個(gè)性化服務(wù)可以使這種相互作用顯得更友好。為了使CRM獲得成功,企業(yè)應(yīng)該使產(chǎn)品和商業(yè)活動(dòng)跟期望和客戶(hù)相匹配,換句話(huà)說(shuō),就是要職能化慣例客戶(hù)生命周期。

到目前為止,大多數(shù)CRM軟件更多關(guān)注客戶(hù)信息的組織和管理的簡(jiǎn)單化。這些軟件(只能稱(chēng)為操作性CRM軟件)關(guān)注于創(chuàng)建一個(gè)客戶(hù)數(shù)據(jù)庫(kù),這個(gè)DB提供了客戶(hù)與企業(yè)關(guān)系的一致性描繪并用專(zhuān)門(mén)的應(yīng)用程序來(lái)提供這些信息;這些軟件包括SFA,客戶(hù)服務(wù)程序,在這些軟件中企業(yè)可以“touch”到客戶(hù)。

然而,這些客戶(hù)信息的絕對(duì)容量和日益復(fù)雜的與客戶(hù)的相互作用將數(shù)據(jù)采集推倒了促使客戶(hù)關(guān)系更有意義的最前端。數(shù)據(jù)采集是通過(guò)使用數(shù)據(jù)分析和數(shù)據(jù)建模的技術(shù)來(lái)發(fā)現(xiàn)數(shù)據(jù)之間的趨勢(shì)和關(guān)系的過(guò)程,它可以用來(lái)理解客戶(hù)希望獲得什么,還可以預(yù)測(cè)客戶(hù)將要做什么!數(shù)據(jù)采集可以幫助你選擇恰當(dāng)?shù)目蛻?hù)并將注意力集中在他們身上,以便為他們提供恰當(dāng)?shù)母郊赢a(chǎn)品;也可以幫助你辨別那些客戶(hù)打算與你“分手”。由于可以提高以最好的方法響應(yīng)個(gè)性化需求的能力,并且可以通過(guò)恰當(dāng)?shù)姆峙滟Y源來(lái)降低成本,這會(huì)導(dǎo)致收入的增加。使用了數(shù)據(jù)采集的CRM應(yīng)用程序被稱(chēng)為分析性CRM軟件。下文將進(jìn)一步描述ACRM的特征,并展示怎樣使用ACRM來(lái)更有效的管理客戶(hù)生命周期。

數(shù)據(jù)采集

數(shù)據(jù)采集中最基本、最簡(jiǎn)單的分析步驟就是描述數(shù)據(jù)。例如,你能夠概述數(shù)據(jù)的靜態(tài)屬性,使用圖表真實(shí)地回顧數(shù)據(jù)并注意你的數(shù)據(jù)中字段的值的分配。但是數(shù)據(jù)描述并不足以提供行動(dòng)計(jì)劃,你必須用從已知結(jié)果中確立的模式來(lái)建立預(yù)測(cè)性模型然后用其它的方法對(duì)它進(jìn)行測(cè)試。一個(gè)好的模型決不該被真實(shí)情況所困惑(地圖并不是真實(shí)的路的精確完美的反映),但是這個(gè)模型能夠用來(lái)指導(dǎo)你理解你的業(yè)務(wù)。

數(shù)據(jù)采集可以用來(lái)對(duì)問(wèn)題進(jìn)行歸類(lèi)并逆推問(wèn)題。在問(wèn)題歸類(lèi)方面,你可以預(yù)測(cè)問(wèn)題屬于那一類(lèi),例如某一個(gè)人是否有良好的信用風(fēng)險(xiǎn)或者幾個(gè)提議中哪一個(gè)最可能被接受。在逆推問(wèn)題方面,你可以測(cè)定一些數(shù)據(jù),如對(duì)某一個(gè)提議的響應(yīng)的最大概率。數(shù)據(jù)采集也常常用來(lái)識(shí)別客戶(hù)的特征,并按照相似性為(如購(gòu)買(mǎi)特殊的產(chǎn)品)對(duì)客戶(hù)進(jìn)行分割歸類(lèi)。

再一次定義CRM

在對(duì)CRM的廣泛理解中,最簡(jiǎn)單的含義就是:管理所有的與客戶(hù)的相互作用。在實(shí)踐中,這需要在客戶(hù)關(guān)系的各個(gè)階段使用與客戶(hù)相關(guān)的信息來(lái)預(yù)測(cè)與客戶(hù)的相互作用。我們將客戶(hù)關(guān)系的各個(gè)階段定義為客戶(hù)生命周期。

客戶(hù)生命周期包括三個(gè)階段:

-獲得客戶(hù)

-提高客戶(hù)的價(jià)值

-保持上等(指效益)客戶(hù)

如果你已經(jīng)將它結(jié)合在OCRM中或者作為一個(gè)獨(dú)立的應(yīng)用程序來(lái)實(shí)施,數(shù)據(jù)采集可以在每一個(gè)階段都提高企業(yè)的收益。

通過(guò)數(shù)據(jù)采集獲取新的客戶(hù)

在CRM中的第一步是識(shí)別潛在客戶(hù)然后將他們轉(zhuǎn)變成真正的客戶(hù);下面將舉例說(shuō)明數(shù)據(jù)采集是如何幫助管理獲取新客戶(hù)的成本和改善這些活動(dòng)的效果。

Big Bank and Credit Card Company(BB&CC)每年進(jìn)行25次直接郵寄活動(dòng),每次活動(dòng)都想一百萬(wàn)人提供申請(qǐng)信用卡的機(jī)會(huì)!稗D(zhuǎn)化率”用來(lái)測(cè)量那些變成信用卡客戶(hù)的比例,這是一個(gè)關(guān)于BB&CC每一次活動(dòng)效果的百分比。

使人們填寫(xiě)信用卡申請(qǐng)僅僅是第一步,BB&CC必須判斷申請(qǐng)是否有很好風(fēng)險(xiǎn),然后決定接受他們成為自己的客戶(hù)還是該拒絕他們的申請(qǐng)。更糟糕的信用風(fēng)險(xiǎn)的人可能比那些有較好信用風(fēng)險(xiǎn)的更容易被接受,對(duì)此不必感到驚奇。統(tǒng)計(jì)顯示大約6%的人在接到郵寄后會(huì)提出申請(qǐng),但他們中只有16%滿(mǎn)足信用風(fēng)險(xiǎn)要求,結(jié)果郵件列表中的人大約有1%稱(chēng)為了BB&CC的新客戶(hù)。

BB&CC的6%的響應(yīng)率意味著每次活動(dòng)中的100萬(wàn)人中僅有60000人對(duì)郵寄的請(qǐng)求產(chǎn)生響應(yīng)。除非BB&CC改變這種建議使用信用卡的“懇求”的種類(lèi)——使用不同的郵件列表,用不同的方式影響客戶(hù),改變“懇求”的術(shù)語(yǔ)——否則不可能獲得超過(guò)60000人的響應(yīng)。并且在6萬(wàn)人中只有1萬(wàn)人滿(mǎn)足信用風(fēng)險(xiǎn)條件而成為客戶(hù)。BB&CC面臨的難題是更有效的影響那僅有的1萬(wàn)人。

BB&CC的每份郵寄成本約1$,也就是說(shuō)每次郵寄活動(dòng)的總成本為$1,000,000。在接下來(lái)的兩年里,那1萬(wàn)人將為BB&CC產(chǎn)生大約$1,250,000(每人約$125)的收益,結(jié)果從一次郵寄活動(dòng)獲得凈利潤(rùn)為$250,000。數(shù)據(jù)采集可以改善這個(gè)回報(bào)率。盡管數(shù)據(jù)采集也不能精確的識(shí)別最后的那1萬(wàn)信用卡用戶(hù),但它可以幫助使促銷(xiāo)活動(dòng)的成本更有效。

首先,BB&CC發(fā)送了50,000個(gè)郵件做測(cè)試并仔細(xì)分析結(jié)果,使用決策建樹(shù)建立預(yù)測(cè)模型來(lái)顯示誰(shuí)將對(duì)郵寄做出響應(yīng),用神經(jīng)網(wǎng)絡(luò)建立信用評(píng)分模型。接著B(niǎo)B&CC結(jié)合這兩個(gè)模型來(lái)發(fā)現(xiàn)那些滿(mǎn)足信用評(píng)定而且最可能對(duì)“懇求”產(chǎn)生響應(yīng)的人群。

BB&CC運(yùn)用這一模型再給郵件列表中剩下的950,000個(gè)人選擇700,000發(fā)送郵件。結(jié)果顯示:從這750,000(包括測(cè)試的50,000)件郵件中,BB&CC獲得了9000份信用卡申請(qǐng)。換句話(huà)說(shuō),響應(yīng)率從1%提高到了1.2%——增加了20%。雖然目標(biāo)只達(dá)到了10000個(gè)中的9000個(gè),但模型每有完美的,剩下的1000時(shí)無(wú)利可圖的。

下面的統(tǒng)計(jì)數(shù)據(jù)的列表:

請(qǐng)注意,郵寄的純利潤(rùn)增加了$125,000,甚至你扣除由于數(shù)據(jù)采集而產(chǎn)生的軟件、硬件即人力資源方面的$40,000,純利潤(rùn)還增加了$85,000。建模的投入轉(zhuǎn)化成了200%的收益,這遠(yuǎn)遠(yuǎn)超過(guò)了BB&CC對(duì)這一項(xiàng)目的ROI要求。

提高現(xiàn)有客戶(hù)的價(jià)值:通過(guò)數(shù)據(jù)采集進(jìn)行搭配銷(xiāo)售

Cannons and Carnations(C&C)是一家專(zhuān)門(mén)銷(xiāo)售舊式迫擊炮和大炮作為室外裝飾的公司,它也賣(mài)大口徑舊式手槍和步槍的收藏品作為室內(nèi)裝飾。C&C的產(chǎn)品目錄手冊(cè)被發(fā)送到大約1200萬(wàn)個(gè)家庭。

當(dāng)客戶(hù)打電話(huà)來(lái)下訂單時(shí),C&C使用Caller ID來(lái)識(shí)別打電話(huà)的人;另外C&C的代表還要求從產(chǎn)品目錄手冊(cè)的郵寄標(biāo)簽獲得電話(huà)號(hào)碼或客戶(hù)編碼。下一次,C&C的代表從數(shù)據(jù)庫(kù)中尋找客戶(hù)并處理訂單。C&C有很好的機(jī)會(huì)進(jìn)行搭配銷(xiāo)售或者賣(mài)給訂購(gòu)者其它附加產(chǎn)品;但是C&C發(fā)現(xiàn)在第一次建議失敗之后,代表向客戶(hù)做出第二次建議時(shí),客戶(hù)可能憤怒的掛斷電話(huà)而什么也不定購(gòu)。的確存在一些客戶(hù)憤恨任何搭配銷(xiāo)售。

在世時(shí)數(shù)據(jù)采集之前,C&C一直在勉強(qiáng)進(jìn)行搭配銷(xiāo)售。沒(méi)有模型時(shí),做出恰當(dāng)?shù)耐扑]的幾率為1/3。因?yàn)橄蛞恍┛蛻?hù)做出了無(wú)法接受的建議,所以C&C希望對(duì)“不該推薦時(shí)決不做出推薦”這一點(diǎn)非常有把握。在實(shí)驗(yàn)中發(fā)現(xiàn)C&C的搭配銷(xiāo)售的銷(xiāo)售率增加不到1%;而C&C過(guò)去一直為這一點(diǎn)獲利勉強(qiáng)進(jìn)行搭配銷(xiāo)售。

在實(shí)施數(shù)據(jù)采集之后,情形發(fā)生了戲劇性的改變;現(xiàn)在數(shù)據(jù)采集模型操縱數(shù)據(jù)。通過(guò)使用數(shù)據(jù)庫(kù)和新訂單中的客戶(hù)信息,這會(huì)告訴客戶(hù)服務(wù)代表應(yīng)該推薦什么。C&C成功賣(mài)給了2%的客戶(hù)一件附加產(chǎn)品,而且更重要的卻沒(méi)有得到客戶(hù)的抱怨。

開(kāi)發(fā)這種性能的過(guò)程與前面用來(lái)解決信用卡客戶(hù)獲得問(wèn)題相似;和前面的情況相同,有兩個(gè)模型是必需的。

第一個(gè)模型預(yù)測(cè)一些人是否為被建議買(mǎi)附加產(chǎn)品而感到不愉快。C&C通過(guò)簡(jiǎn)短的電話(huà)調(diào)查了解客戶(hù)的法應(yīng)如何。按照保守的計(jì)算方法,C&C將拒絕參與調(diào)查的人和對(duì)推薦購(gòu)買(mǎi)附加產(chǎn)品反感的人均計(jì)算在內(nèi)。隨后,為了檢驗(yàn)這種假設(shè)(將拒絕參與調(diào)查的人歸入拒絕推薦的人),C&C向這些拒絕回答調(diào)查問(wèn)題的人推薦附加產(chǎn)品;令人感到驚奇的是,他們并不拒絕打[誒銷(xiāo)售,于是發(fā)現(xiàn)調(diào)查時(shí)沒(méi)有根據(jù)的。這使BB&CC可以做出更多的推薦,并進(jìn)一步提高收益。第二個(gè)模型用來(lái)預(yù)測(cè)哪些提議不會(huì)被接受。

總之?dāng)?shù)據(jù)采集幫助BB&CC更好地理解它的客戶(hù)的需求。當(dāng)數(shù)據(jù)采集模型被結(jié)合在典型的搭配銷(xiāo)售的CRM活動(dòng)中時(shí),這些模型幫助BB&CC提高了2%的收益。

提高現(xiàn)有客戶(hù)的價(jià)值:通過(guò)數(shù)據(jù)采集進(jìn)行個(gè)性化服務(wù)

Big Sam’s Clothing 開(kāi)發(fā)一個(gè)網(wǎng)站來(lái)補(bǔ)充它的商品目錄。當(dāng)你訪(fǎng)問(wèn)它的網(wǎng)站是,你首先會(huì)看到“Howdy Pardner”的歡迎詞。然而,一旦你在該網(wǎng)站注冊(cè),Pardner就會(huì)變成你的姓名。如果已經(jīng)有過(guò)Big Sam’s的訂單紀(jì)錄,它就會(huì)告訴你那些可能引起你的特殊興趣的新商品。當(dāng)你注意到一件特殊的商品如一件防水皮大衣時(shí),Big Sam’s會(huì)建議在一此購(gòu)買(mǎi)中需要補(bǔ)充的其它條目。

在Big Sam’s第一次將網(wǎng)站投放市場(chǎng)時(shí),并沒(méi)有什么個(gè)性化的內(nèi)容,網(wǎng)站只是商品目錄有效的在線(xiàn)翻版;但是卻沒(méi)有利用Web現(xiàn)存的銷(xiāo)售機(jī)會(huì)。

數(shù)據(jù)采集迅速提高了Big Sam’s的網(wǎng)絡(luò)銷(xiāo)售。產(chǎn)品目錄手冊(cè)常常簡(jiǎn)單地按照用戶(hù)挑選產(chǎn)品的類(lèi)型對(duì)商品進(jìn)行分組。然而在在線(xiàn)商店中商品分組可能是完全不同的,它常常以考慮內(nèi)的商品補(bǔ)充條目為基礎(chǔ)。網(wǎng)站特別的地方還在于:它不僅考慮你看到的條目,而且還考慮你的“購(gòu)物籃”中的商品,結(jié)果就會(huì)產(chǎn)生更加客戶(hù)化的推薦。

首先,Big Sam’s使用聚類(lèi)(clustering)的方法來(lái)發(fā)現(xiàn)哪些商品時(shí)自然的分在一組中。有時(shí)一些聚類(lèi)是十分明顯的,如襯衫和短褲;一些聚類(lèi)可能是令人驚奇的,如關(guān)于沙漠探險(xiǎn)的書(shū)和醫(yī)療工具包。這些聚類(lèi)用來(lái)在有人看到其中的一個(gè)產(chǎn)品使向他做出建議。

Big Sam’s接著建立客戶(hù)剖析來(lái)幫助識(shí)別哪些會(huì)對(duì)經(jīng)常添加在商品目錄中的新商品感興趣的客戶(hù)。Big Sam’s所做的指引客戶(hù)購(gòu)買(mǎi)那些挑選出來(lái)的產(chǎn)品不僅僅帶來(lái)銷(xiāo)售的增加,而且鞏固了客戶(hù)關(guān)系。調(diào)查顯示Big Sam’s被看作是一個(gè)衣物和裝飾品方面可信賴(lài)的顧問(wèn)。

為了擴(kuò)大影響,Big Sam’s實(shí)施了一個(gè)應(yīng)用程序來(lái)向客戶(hù)發(fā)送Email,這些Email包含了由數(shù)據(jù)采集模型預(yù)測(cè)的會(huì)吸引客戶(hù)的新產(chǎn)品信息。當(dāng)客戶(hù)將這個(gè)看作牽攝客戶(hù)服務(wù)的例子時(shí),Big Sam’s發(fā)現(xiàn)這是一個(gè)可以改善收益的程序。

個(gè)性化銷(xiāo)售的努力為Big Sam’s帶來(lái)了盈利:它在重復(fù)銷(xiāo)售、每一客戶(hù)的平均銷(xiāo)售量和銷(xiāo)售的平均范圍等方面帶來(lái)了一個(gè)重大的、可測(cè)量的提高。

保持上等(收益)客戶(hù):通過(guò)數(shù)據(jù)采集

幾乎每一個(gè)公司在獲取一個(gè)新客戶(hù)所投入的成本都遠(yuǎn)大于保持一個(gè)上等客戶(hù)的成本。KownServce(ISP,如中國(guó)的163)所面臨的一個(gè)難題是,它每月經(jīng)歷每月8%的行業(yè)平均磨損(客戶(hù)減少)率;這意味著如果他擁有100萬(wàn)客戶(hù),則每月會(huì)有8萬(wàn)的客戶(hù)離它而去。替換這些客戶(hù)的成本為每個(gè)200美金或者一共1600萬(wàn),這也是著手磨損管理程序的主要?jiǎng)訖C(jī)。

KownServce要做的第一件事就是準(zhǔn)備用來(lái)預(yù)測(cè)哪些客戶(hù)會(huì)離開(kāi)的數(shù)據(jù)。KownServce需要從客戶(hù)數(shù)據(jù)庫(kù)中選擇變量并(可能)進(jìn)行轉(zhuǎn)換。KownServce的大多數(shù)用戶(hù)是進(jìn)行撥號(hào)連接,所以KownServce知道每一個(gè)客戶(hù)連接到Web需要多長(zhǎng)的時(shí)間。KownServce也知道客戶(hù)計(jì)算機(jī)的傳輸?shù)臄?shù)據(jù)量、一個(gè)用戶(hù)所用有的Email賬號(hào)的數(shù)量、Email信息發(fā)送和接收的數(shù)量以及客戶(hù)的賬單歷史。另外,KownServce還有客戶(hù)撥號(hào)時(shí)提供的人口統(tǒng)計(jì)數(shù)據(jù)。

KownServce要做的第一件事就是需要識(shí)別哪些是“上等”客戶(hù)。這并不是數(shù)據(jù)采集問(wèn)題,而是通過(guò)計(jì)算得出的商業(yè)定義(如收益率或生命周期價(jià)值)。KownServce建立模型來(lái)剖析能帶來(lái)收益的客戶(hù)和不能帶來(lái)收益的客戶(hù)。KownServce不僅用這一模型來(lái)提高客戶(hù)的保持力,還用它來(lái)識(shí)別哪些客戶(hù)現(xiàn)在不能帶來(lái)收益但將來(lái)卻可以。

接著KownServce建立模型來(lái)預(yù)測(cè)哪些可以帶來(lái)收益的客戶(hù)會(huì)離開(kāi)。在大多數(shù)數(shù)據(jù)采集問(wèn)題中,決定如何使用哪些數(shù)據(jù)和怎樣將現(xiàn)存數(shù)據(jù)結(jié)合起來(lái)是模型開(kāi)發(fā)中最大的難題。例如:KownServce需要關(guān)注如每月使用的時(shí)間系列數(shù)據(jù),模型中寧愿使用三個(gè)月中每月的平均數(shù)量而不采用原始的時(shí)間系列數(shù)據(jù)。KownServce也計(jì)算出三個(gè)月的平均數(shù)量的改變,并將它作為預(yù)測(cè)的依據(jù)。這些依據(jù)中一部分是非常好的,如下降的使用,它們是出現(xiàn)需要處理的問(wèn)題的預(yù)兆;另外一些依據(jù)如服務(wù)請(qǐng)求的數(shù)量和它的平均數(shù)量的改變預(yù)示著客戶(hù)滿(mǎn)意度出現(xiàn)問(wèn)題。

預(yù)測(cè)誰(shuí)將出現(xiàn)離開(kāi)是不夠的;谀P彤a(chǎn)生的結(jié)果,KownServce確定可能的計(jì)劃和可以誘使客戶(hù)留下的提議。例如一部分離開(kāi)者由于超過(guò)固定費(fèi)用下的可用量一大截的使用(上網(wǎng))而需要支付次超過(guò)的得那一部分真實(shí)的費(fèi)用;KownServce給這一部分用戶(hù)提供較高費(fèi)用的服務(wù),但卻包含更多的捆綁時(shí)間。也有一些客戶(hù)被提議使用更多的磁盤(pán)空間來(lái)存放個(gè)人主頁(yè)。KownServce建立模型來(lái)預(yù)測(cè)度一個(gè)特殊的用戶(hù)需要提供更有效的提議。

總的說(shuō)來(lái),項(xiàng)目需要三個(gè)模型。一個(gè)模型用來(lái)確定離開(kāi)用戶(hù),第二個(gè)模型用來(lái)選擇可以帶來(lái)收益的潛在的離開(kāi)者來(lái)進(jìn)行“飼養(yǎng)”,第三個(gè)模型為這些潛在的離開(kāi)者匹配最適宜的提議。得到的結(jié)果是KownServce的客戶(hù)離開(kāi)率由8%下降到7.5%,這為KownServce每月減少獲取客戶(hù)的成本為$1,000,000。

KownServce發(fā)現(xiàn)自己的數(shù)據(jù)采集投資是有回報(bào)的——它改善了客戶(hù)關(guān)系,并且引人注目地提高了收益。

將數(shù)據(jù)采集運(yùn)用到CRM中

為了為你的CRM系統(tǒng)建立良好的模型,有一些步驟你必須遵行。下面描述的兩個(gè)數(shù)據(jù)采集過(guò)程模型與其它模型是相似的,不同之處僅在于在不同步驟中強(qiáng)調(diào)的重點(diǎn)而已。

緊記下面列表中的步驟,但數(shù)據(jù)采集過(guò)程并不是線(xiàn)性的——你需要回復(fù)到前面的步驟是不可避免的。例如在“explore data”中進(jìn)行的內(nèi)容可能需要你增加新的數(shù)據(jù)到數(shù)據(jù)采集數(shù)據(jù)庫(kù)中。你建立的初始模型可能提供一種洞察力,它會(huì)引導(dǎo)你增加新的變量。

有效的CRM中的數(shù)據(jù)采集的基本步驟為:

1.定義商業(yè)問(wèn)題(Define business problem)

2. 建立行銷(xiāo)數(shù)據(jù)庫(kù)(Build marketing database)

3. 研究數(shù)據(jù)(Explore data)

4. 為建模準(zhǔn)備數(shù)據(jù) Prepare data for modeling)

5.建立模型(Build model)

6.評(píng)價(jià)模型(Evaluate model)

7.展開(kāi)模型獲得結(jié)果Deploy model and results

1. 定義商業(yè)問(wèn)題 每一個(gè)CRM應(yīng)用程序都有一個(gè)或多個(gè)商業(yè)目標(biāo),為此你需要建立恰當(dāng)?shù)哪P汀8鶕?jù)你特殊的目標(biāo)如“提高響應(yīng)率”或“提高每個(gè)響應(yīng)的價(jià)值”,你將建立完全不同的模型。問(wèn)題的有效陳述包含了測(cè)量你的CRM引用程序的成果的方法。

2. 建立行銷(xiāo)數(shù)據(jù)庫(kù) 二到四是組成數(shù)據(jù)準(zhǔn)備的核心。他們花費(fèi)的時(shí)間或努力比其他幾步加起來(lái)還多。數(shù)據(jù)準(zhǔn)備和模型建立之間可能反復(fù)進(jìn)行,因?yàn)槟銖哪P椭袑W(xué)到新的東西,而這又要你修改數(shù)據(jù)。數(shù)據(jù)準(zhǔn)備階段無(wú)論如何也要占去全部數(shù)據(jù)采集過(guò)程的50%到90%的時(shí)間和努力。
你需要建立一個(gè)行銷(xiāo)數(shù)據(jù)庫(kù),因?yàn)槟愕牟僮餍詳?shù)據(jù)庫(kù)和操作性數(shù)據(jù)倉(cāng)庫(kù)常常沒(méi)有提供你需要的形式的數(shù)據(jù);此外,你的CRM應(yīng)用程序還可能性干擾這個(gè)系統(tǒng)的快速、有效地執(zhí)行。
在你建立行銷(xiāo)數(shù)據(jù)庫(kù)的時(shí)候,你好需要對(duì)它進(jìn)行凈化——如果你想獲得良好的模型,你必須有干凈的數(shù)據(jù)。你需要的數(shù)據(jù)可能在不同的數(shù)據(jù)庫(kù)中,如客戶(hù)數(shù)據(jù)庫(kù),產(chǎn)品數(shù)據(jù)庫(kù)以及事務(wù)處理數(shù)據(jù)庫(kù)。這意味你需要集成鞏固數(shù)據(jù)到單一的行銷(xiāo)數(shù)據(jù)庫(kù)中并且去除來(lái)之多個(gè)數(shù)據(jù)源的數(shù)據(jù)在值商的差異。沒(méi)有恰當(dāng)進(jìn)行數(shù)據(jù)值差異的數(shù)據(jù)是質(zhì)量問(wèn)題的主要來(lái)源。在多個(gè)數(shù)據(jù)源中出現(xiàn)的較大差異主要在數(shù)據(jù)定義和使用的方法上。數(shù)據(jù)值的一些矛盾是很容易發(fā)現(xiàn)的,如同樣的客戶(hù)有幾個(gè)不同的(不同的系統(tǒng)正在使用)的地址;但也有一些是很“狡猾的”,如同一個(gè)客戶(hù)有不同的名字,更糟的是有不同的客戶(hù)識(shí)別編碼。

3. 研究數(shù)據(jù) 在建立良好的預(yù)測(cè)模型之前,你必須理解你使用的數(shù)據(jù)的含義。通過(guò)聚集各種數(shù)據(jù)摘要(如平均值、標(biāo)準(zhǔn)偏離)和關(guān)注數(shù)據(jù)描述開(kāi)始進(jìn)行研究數(shù)據(jù)。你可能為多維數(shù)據(jù)建立交叉表格。
圖像化和可視化工具是數(shù)據(jù)準(zhǔn)備中的所必需的,但它們對(duì)數(shù)據(jù)分析的重要性卻不能過(guò)分強(qiáng)調(diào)。數(shù)據(jù)可視化常產(chǎn)生導(dǎo)致新的洞察力和成功的內(nèi)容。一些非常有用的普偏的數(shù)據(jù)顯示是柱狀圖,它顯示了數(shù)據(jù)值得分布情況。你也可以看到不同參數(shù)的二維獲三維的散點(diǎn)圖。這種增加第三變量的能力極大地提高了一些圖形的可用性。

4. 為建模準(zhǔn)備數(shù)據(jù) 這是建立模型之前的數(shù)據(jù)準(zhǔn)備的最后一步。這一步中主要有四個(gè)主要的部分:
首先,你要為建立模型選擇變量。理想情況是:將你擁有的所有變量加入到數(shù)據(jù)采集工具中,找到那些最好的預(yù)測(cè)。但在實(shí)際中,這是非常棘手的。其中一個(gè)原因是建立模型的時(shí)間隨著變量得增加而增加。另一個(gè)原因就是盲目性,包括無(wú)關(guān)緊要的數(shù)據(jù)列被加入,卻很少甚至不能提高預(yù)測(cè)能力。
下一步是從原始數(shù)據(jù)中構(gòu)件新的預(yù)測(cè)依據(jù)。例如預(yù)測(cè)信用風(fēng)險(xiǎn)使用使用債務(wù)收入的比率而不是單獨(dú)使用債務(wù)和收入作為預(yù)測(cè)依據(jù)的變量可以產(chǎn)生更準(zhǔn)確的結(jié)果并且更容易理解。
接著,你需要從數(shù)據(jù)中選取一個(gè)子集或標(biāo)本來(lái)建立模型。即使你有許多數(shù)據(jù);然而使用所有的數(shù)據(jù)會(huì)花費(fèi)太長(zhǎng)的時(shí)間或者需要買(mǎi)更好的硬件,但你并不愿意如此。使用恰當(dāng)?shù)碾S機(jī)挑選的子集并不會(huì)產(chǎn)生CRM問(wèn)題的信息的不足。建立模型的兩種選擇為:使用所有得數(shù)據(jù)建立一個(gè)模型或者建立多個(gè)以數(shù)據(jù)標(biāo)本為基礎(chǔ)的模型;后者常常能幫助你建立更準(zhǔn)確有力的模型。
最后,你需要轉(zhuǎn)換變量,使之和你選定用來(lái)建立模型的運(yùn)算法則一致。

5. 數(shù)據(jù)采集模型的建立 關(guān)于模型建立的需要記住的最重要的就是模型建立是一個(gè)迭代的過(guò)程。你需要研究可供選擇的模型,從中找到過(guò)解決你的商業(yè)問(wèn)題最有用的。在你探究一個(gè)好的模型過(guò)程中獲悉的知識(shí)或許要求你回頭修改你正在使用的數(shù)據(jù)甚至修改你的問(wèn)題的陳述。
大多數(shù)CRM應(yīng)用程序都給予一種叫做被監(jiān)督學(xué)習(xí)的協(xié)議。你開(kāi)始使用客戶(hù)信息,而且要求產(chǎn)生的結(jié)果是已知的。例如,你有來(lái)自以前的郵件列表的歷史數(shù)據(jù),它與你現(xiàn)在使用的數(shù)據(jù)非常相似;蛘,你可能不得不進(jìn)行郵寄測(cè)試來(lái)確定人們對(duì)一個(gè)提議的響應(yīng)如何。你將數(shù)據(jù)分為兩組,使用第一組來(lái)培養(yǎng)建立或評(píng)估你的模型,接著使用第二組數(shù)據(jù)來(lái)測(cè)試模型。當(dāng)培養(yǎng)和測(cè)試周期完成之后,模型也就建立起來(lái)了。

6. 評(píng)價(jià)模型 評(píng)價(jià)模型結(jié)果的方法中,最可能產(chǎn)生評(píng)價(jià)過(guò)高的基準(zhǔn)就是精確性。假設(shè)你有一個(gè)提議僅僅有1%的人響應(yīng)。模型預(yù)測(cè)“沒(méi)有人會(huì)響應(yīng)”,這個(gè)預(yù)測(cè)99%是正確的,但那確實(shí)100%的無(wú)效。另一個(gè)常使用的基準(zhǔn)“提高多少”,這用來(lái)衡量使用模型后完成的改進(jìn)有多大,但是它并沒(méi)有考慮成本和收入。所以最可取的評(píng)價(jià)基準(zhǔn)是收益或ROI。

7. 將數(shù)據(jù)采集運(yùn)用到CRM方案中 在建立CRM應(yīng)用中,數(shù)據(jù)采集常常是整個(gè)產(chǎn)品中很小的但意義重大的一部分。例如:以數(shù)據(jù)采集為基礎(chǔ)預(yù)測(cè)模式可能將各個(gè)領(lǐng)域?qū)<业闹R(shí)結(jié)合在一個(gè)很大的被許多類(lèi)型的人使用的應(yīng)用程序中。
數(shù)據(jù)采集被實(shí)際建立在應(yīng)用程序中的方式由你的客戶(hù)交互作用的本質(zhì)所決定。你與客戶(hù)的交互作用的兩種方式:客戶(hù)主動(dòng)聯(lián)系你(inbound)或者你主動(dòng)聯(lián)系他們(outbound)。這時(shí)數(shù)據(jù)采集展開(kāi)的需求是完全不同的。
后一種方式的特征有你的公司所決定;因?yàn)槁?lián)系活動(dòng)是由你的公司發(fā)起,例如直接郵寄活動(dòng)。結(jié)果,通過(guò)運(yùn)用模型到你的客戶(hù)數(shù)據(jù)庫(kù),你選擇客戶(hù)進(jìn)行聯(lián)系。Outbound商業(yè)活動(dòng)的另一種類(lèi)型是廣告活動(dòng)。這用情形下,你對(duì)由模型顯示的具有良好前景的特征和你的廣告可以影響的人的特征進(jìn)行匹配。
在inbound事務(wù)中,如電話(huà)定購(gòu),Internet訂購(gòu),客戶(hù)服務(wù)呼叫等,應(yīng)用程序必須實(shí)時(shí)響應(yīng);因此數(shù)據(jù)采集是內(nèi)含在這種應(yīng)用程序中的并且積極地做出推薦動(dòng)作。
無(wú)論哪一種情形,在運(yùn)用模型到新數(shù)據(jù)中你必須處理的一個(gè)關(guān)鍵問(wèn)題是你在建立模型中的使用數(shù)據(jù)轉(zhuǎn)換。如果在無(wú)論來(lái)自事務(wù)處理還是數(shù)據(jù)庫(kù)的輸入數(shù)據(jù)中包含了年齡、收入、性別字段,但是模型需要的年齡收入比率和性別已經(jīng)改變?yōu)槎兞,因此你必須轉(zhuǎn)換輸入數(shù)據(jù)。當(dāng)你想快速展開(kāi)大量模型時(shí),不費(fèi)力的插入這些轉(zhuǎn)換數(shù)據(jù)就變成了最重要的生產(chǎn)力因素。

結(jié)論

在當(dāng)今市場(chǎng)上,客戶(hù)關(guān)系管理的本質(zhì)就是更有效地進(jìn)行競(jìng)爭(zhēng)。你使用你的客戶(hù)信息來(lái)滿(mǎn)足客戶(hù)需求的效果越好,你就會(huì)獲得更多的收益。操作性CRM需要分析性CRM,應(yīng)為ACRM的核心就是預(yù)測(cè)性的數(shù)據(jù)采集模型。商業(yè)成功的途徑需要理解客戶(hù)和客戶(hù)的需求,而數(shù)據(jù)采集正是它的基本指南。

本文來(lái)自SPSS的英文材料,文中的內(nèi)容可以理解為ACRM的運(yùn)用方式(另外兩個(gè)為:認(rèn)識(shí)什么是ACRM和ACRM的數(shù)據(jù)倉(cāng)庫(kù)得建立)。該公司提供發(fā)現(xiàn)客戶(hù)期望和預(yù)測(cè)客戶(hù)將要做什么的解決方案;這種方案位于CRM和BI的交接處。SPSS的解決方案集成并分析行銷(xiāo)、客戶(hù)和操作性數(shù)據(jù),它為全世界垂直市場(chǎng)的以下行業(yè)提供解決方案:電訊、保健、銀行、金融、保險(xiǎn)、制造、零售業(yè)、市場(chǎng)研究等。

摘自www.amteam.org



相關(guān)鏈接:
如何實(shí)施CRM項(xiàng)目? 2001-06-05
呼叫中心:網(wǎng)絡(luò)時(shí)代的客戶(hù)關(guān)系管理 2001-06-05
電信運(yùn)營(yíng)商如何正確認(rèn)識(shí)CRM 2001-06-01
某小型企業(yè)CRM實(shí)施報(bào)告 2001-06-01
中國(guó)民航為什么需要CRM 2001-06-01