醫(yī)療大數(shù)據(jù)的優(yōu)勢(shì)和應(yīng)用場(chǎng)景
有效的整合和利用數(shù)字化的醫(yī)療大數(shù)據(jù)對(duì)個(gè)體醫(yī)生,康寶中心,大型醫(yī)院,和醫(yī)療研究機(jī)構(gòu)都有著顯著的好處。
潛在的利益包括 (W.Raghupathi & Raghupathi, 2014):
1)更多更準(zhǔn)確的數(shù)據(jù)使得疾病能在早期被監(jiān)測(cè)到,從而使治療更容易和有效。
2)通過對(duì)特定個(gè)體或人群的健康管理,快速有效地監(jiān)測(cè)保健詐騙。
3)基于大量的歷史數(shù)據(jù),預(yù)測(cè)和估計(jì)特定疾病或人群的某些未來(lái)趨勢(shì),比如:預(yù)測(cè)特定病人的住院時(shí)間,哪些病人會(huì)選擇非急需性手術(shù), 哪些病人不會(huì)從手術(shù)治療中受益,哪些病人會(huì)更容易出現(xiàn)并發(fā)癥,等等。麥肯錫估計(jì),單單就美國(guó)而言,醫(yī)療大數(shù)據(jù)的利用可以為醫(yī)療開支節(jié)省出3千億美元一年。
醫(yī)療大數(shù)據(jù)的利用可以從以下幾方面減少浪費(fèi)和提高效率 (Manyika, 以及其他人, 2011):
臨床操作: 相對(duì)更有效的醫(yī)學(xué)研究,發(fā)展出臨床相關(guān)性更強(qiáng)和成本效益更高的方法用來(lái)診斷和治療病人。
研究和發(fā)展:在藥品和醫(yī)療器械方面,建立更低磨損度,更精簡(jiǎn),更快速,更有針對(duì)性的研發(fā)產(chǎn)品線。統(tǒng)計(jì)工具和算法方面,提高臨床試驗(yàn)設(shè)計(jì)和患者的招募,使得治療方法可以更好地匹配個(gè)體患者的病癥,從而降低臨床試驗(yàn)失敗的可能和加快新的治療方法推向市場(chǎng)。分析臨床試驗(yàn)和病人的病歷,以確定后續(xù)的跡象,并在產(chǎn)品進(jìn)入市場(chǎng)前發(fā)現(xiàn)病人對(duì)藥物醫(yī)療方法的不良反應(yīng)。
公共衛(wèi)生:分析疾病模式和追蹤疾病暴發(fā)及傳播方式途徑,提高公共衛(wèi)生監(jiān)測(cè)和反應(yīng)速度。更快更準(zhǔn)確地研制靶向疫苗,例如:開發(fā)每年的流感疫苗。
此外,醫(yī)療大數(shù)據(jù)的分析還有利于以下幾方面的發(fā)展 (W.Raghupathi & Raghupathi, 2014):
循證醫(yī)學(xué):結(jié)合和分析各種結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù),電子病歷,財(cái)務(wù)和運(yùn)營(yíng)數(shù)據(jù),臨床資料和基因組數(shù)據(jù)用以尋找與病癥信息相匹配的治療,預(yù)測(cè)疾病的高;颊呋蛱峁└喔咝У尼t(yī)療服務(wù)。
基因組分析:更有效和低成本的執(zhí)行基因測(cè)序,使基因組分析成為正規(guī)醫(yī)療保健決策的必要信息并納入病人病歷記錄。
提前裁定欺詐分析:快速分析大量的索賠請(qǐng)求,降低欺詐成功率,減少浪費(fèi)和濫用。
設(shè)備/遠(yuǎn)程監(jiān)控:從住院和家庭醫(yī)療裝置采集和分析實(shí)時(shí)大容量的快速移動(dòng)數(shù)據(jù),用于安全監(jiān)控和不良反應(yīng)的預(yù)測(cè)。
病人的個(gè)人資料分析:全面分析病人個(gè)人信息(例如,分割和預(yù)測(cè)模型)從中找到能從特定健保措施中獲益的個(gè)人。例如,某些疾病的高;颊撸ㄈ缣悄虿。┛梢詮念A(yù)防措施中受益。這些人如果擁有足夠的時(shí)間提前有針對(duì)性的預(yù)防病情,那么大多數(shù)的危害可以降到最低程度,甚至可以完全消除。
然而,根據(jù)一份針對(duì)美國(guó)和加拿大333家醫(yī)療機(jī)構(gòu)及10家其他機(jī)構(gòu)的調(diào)查(IHTT, 2013),2013年,醫(yī)療機(jī)構(gòu)累積的數(shù)據(jù)量比2011年多出了85%, 但77%的醫(yī)療健康行政人員對(duì)自己機(jī)構(gòu)在數(shù)據(jù)管理方面的能力評(píng)價(jià)為“C”。此外,僅有34%報(bào)告他們能從電子健康記錄(EHR)中獲取數(shù)據(jù)用來(lái)幫助病人,而有 43% 報(bào)告他們不能收集到足夠多的數(shù)據(jù)來(lái)幫助病人。由此可見,在北美的醫(yī)療系統(tǒng)中,醫(yī)療大數(shù)據(jù)的管理使用準(zhǔn)備工作還有一大段路要走。中國(guó)也是處在起步階段。
數(shù)據(jù)分析框架(傳統(tǒng)數(shù)據(jù)分析框架,大數(shù)據(jù)分析框架)
醫(yī)療大數(shù)據(jù)有著前面第一節(jié)提到的所有特征。在醫(yī)療大數(shù)據(jù)帶來(lái)各種優(yōu)勢(shì)的同時(shí),大數(shù)據(jù)隨之帶來(lái)的各種特性使得傳統(tǒng)的數(shù)據(jù)處理和數(shù)據(jù)分析方法及軟件捉襟見肘,問題多多。在大數(shù)據(jù)時(shí)代出現(xiàn)之前,受限于數(shù)據(jù)量的可獲得性和計(jì)算能力的有限性,傳統(tǒng)的數(shù)據(jù)管理和分析采用著不同的思路和流程。傳統(tǒng)上,對(duì)于問題的研究建立在假設(shè)的基礎(chǔ)上進(jìn)行驗(yàn)證,進(jìn)而研究事物的相關(guān)因果性,希望能回答“為什么”。
而在大數(shù)據(jù)時(shí)代,海量數(shù)據(jù)的涌現(xiàn)提供了從不同角度更細(xì)致更全面觀察研究數(shù)據(jù)的可能,從而打開了人們的好奇心,探索欲望,人們想知道到數(shù)據(jù)告訴了我什么,而不僅僅是我的猜想是否被數(shù)據(jù)驗(yàn)證了。人們?cè)絹?lái)越多地用大數(shù)據(jù)挖掘各種感興趣的關(guān)聯(lián),非關(guān)聯(lián)等相關(guān)性,然后再進(jìn)一步比較,分析,歸納,研究(“為什么”變成一個(gè)選項(xiàng)而不是唯一終極目標(biāo))。大數(shù)據(jù)與傳統(tǒng)數(shù)據(jù)思路上的不同導(dǎo)致了分析流程的不同,如圖一所示:
圖一
面對(duì)海量的數(shù)據(jù)和不同的分析思路,大數(shù)據(jù)的管理和分析與傳統(tǒng)數(shù)據(jù)分析的差異日益加大。回答特定問題的單一預(yù)設(shè)結(jié)構(gòu)化數(shù)據(jù)庫(kù)明顯不能完全勝任處理大數(shù)據(jù)的海量及混雜等問題。數(shù)據(jù)的混雜多樣性具體可以從一些調(diào)查數(shù)據(jù)中表現(xiàn)出來(lái)。SAS 的一份調(diào)查報(bào)告顯示機(jī)構(gòu)內(nèi)的非結(jié)構(gòu)化數(shù)據(jù)最多可以占到總數(shù)據(jù)量的85%,而這些非數(shù)字,非結(jié)構(gòu)化的數(shù)據(jù)卻必須被量化分析和用到?jīng)Q策分析中(Troester, 2012)。
另一份2013年進(jìn)行的 SAS 調(diào)查報(bào)告顯示在461個(gè)提供完整反饋信息的機(jī)構(gòu)中只有26%的機(jī)構(gòu)表示他們所擁有的大數(shù)據(jù)是結(jié)構(gòu)化的(Russom, 2013)。 此外,在機(jī)構(gòu)中,分析的數(shù)據(jù)一般不會(huì)只有一個(gè)單一的來(lái)源。Alteryx 的調(diào)查報(bào)告顯示在200家被調(diào)查的機(jī)構(gòu)中只有6%的機(jī)構(gòu)表示他們的數(shù)據(jù)是只有一個(gè)來(lái)源,最為普遍的情況是5-10個(gè)來(lái)源, 具體分布如圖二(Alteryx, 2014)。
調(diào)查中還顯示 90%的被調(diào)查樣本表示有數(shù)據(jù)整合問題,37%表示需要等其他小組提供數(shù)據(jù),30%表示不能得到他們想要的數(shù)據(jù),一般估計(jì)是一個(gè)數(shù)據(jù)分析師的60%到80%的時(shí)間是花在數(shù)據(jù)處理準(zhǔn)備階段上的(Alteryx, 2014)。