隨著全球經(jīng)濟(jì)一體化的浪潮,中國(guó)正在成為世界制造業(yè)的中心,它為中國(guó)的企業(yè)提供了更多機(jī)會(huì)的同時(shí),也帶來(lái)了更強(qiáng)勁的競(jìng)爭(zhēng)。隨著全球化競(jìng)爭(zhēng)的加劇,制造企業(yè)開(kāi)始尋求新的戰(zhàn)略競(jìng)爭(zhēng)點(diǎn),整個(gè)產(chǎn)業(yè)也逐漸從產(chǎn)品和價(jià)格競(jìng)爭(zhēng)轉(zhuǎn)向服務(wù)競(jìng)爭(zhēng)。為了提高企業(yè)的競(jìng)爭(zhēng)力,目前很多企業(yè)在信息化技術(shù)方面加大了投入。比如ERP、PDM和CRM等信息技術(shù)在企業(yè)的推廣應(yīng)用等。
ERP的意思是企業(yè)資源計(jì)劃,系統(tǒng)主要包括四大部分,即財(cái)務(wù)管理、生產(chǎn)制造管理、分銷(xiāo)與后勤管理及其他管理模塊。它的重點(diǎn)是在企業(yè)的內(nèi)部生產(chǎn)領(lǐng)域。它強(qiáng)調(diào)的是以產(chǎn)品為中心,以企業(yè)內(nèi)部生產(chǎn)領(lǐng)域?yàn)橹攸c(diǎn)。
PDM側(cè)重于對(duì)產(chǎn)品開(kāi)發(fā)階段數(shù)據(jù)和企業(yè)內(nèi)部產(chǎn)品數(shù)據(jù)的管理,它的體系結(jié)構(gòu)是強(qiáng)調(diào)以文檔為中心的研發(fā)流程管理,重點(diǎn)在于建立文檔之間的聯(lián)接。
CRM (Custom Relationship Management)的意思是客戶(hù)關(guān)系管理,它強(qiáng)調(diào)把客戶(hù)放在核心位置,其理念要求企業(yè)完整地認(rèn)識(shí)整個(gè)客戶(hù)生命周期,圍繞“客戶(hù)接觸點(diǎn)”,提供與客戶(hù)溝通的統(tǒng)一、集成的平臺(tái)和工具,涉及企業(yè)一切與客戶(hù)有關(guān)的信息交互進(jìn)行處理,提高員工、客戶(hù)接觸的效率和客戶(hù)反饋率,為客戶(hù)提供整體的服務(wù)!同時(shí)采用數(shù)據(jù)挖掘技術(shù)對(duì)有關(guān)信息進(jìn)行分析,得到有價(jià)值的信息和知識(shí)。
如果說(shuō)現(xiàn)在企業(yè)的競(jìng)爭(zhēng)是產(chǎn)品的競(jìng)爭(zhēng)、企業(yè)資源的競(jìng)爭(zhēng),那么,不久的將來(lái)它將轉(zhuǎn)向以客戶(hù)為中心的服務(wù)上。CRM系統(tǒng)正是為滿(mǎn)足上述需求應(yīng)運(yùn)而生。目前,在發(fā)達(dá)國(guó)家,制造業(yè)的服務(wù)創(chuàng)新已成為企業(yè)利潤(rùn)的增長(zhǎng)點(diǎn)。
本文針對(duì)CRM客戶(hù)關(guān)系管理中的客戶(hù)流失問(wèn)題,結(jié)合制造業(yè)的特點(diǎn),從數(shù)據(jù)挖掘技術(shù)層面進(jìn)行思路探討。試圖得到企業(yè)管理層面和信息技術(shù)層面對(duì)CRM客戶(hù)關(guān)系管理中的客戶(hù)流失問(wèn)題予以關(guān)注,為企業(yè)未來(lái)贏得新的利潤(rùn)增長(zhǎng)點(diǎn)。
1.問(wèn)題由來(lái)
CRM對(duì)制造商的作用在于了解客戶(hù)所有的行為活動(dòng)并確保與客戶(hù)的關(guān)系。它能把前端辦公和后臺(tái)生產(chǎn)聯(lián)系起來(lái),是企業(yè)和客戶(hù)的交叉點(diǎn),能幫助制造商制造出定制化的產(chǎn)品,增加銷(xiāo)售并降低營(yíng)銷(xiāo)開(kāi)支,且使客戶(hù)的購(gòu)買(mǎi)變得更加方便。制造業(yè)CRM系統(tǒng)主要包括營(yíng)銷(xiāo)管理、銷(xiāo)售管理、服務(wù)管理、呼叫中心、客戶(hù)信息管理、決策支持等多個(gè)模塊。它的關(guān)鍵技術(shù)之一在于能否提供基于聯(lián)機(jī)分析處理的數(shù)據(jù)倉(cāng)庫(kù)技術(shù),從而具備動(dòng)態(tài)、整合的客戶(hù)數(shù)據(jù)管理和查詢(xún)功能,對(duì)客戶(hù)購(gòu)買(mǎi)行為具有參考功能;對(duì)客戶(hù)流失具有警告功能。此外,CRM的客戶(hù)分類(lèi)技術(shù),讓企業(yè)建立起一對(duì)一的客戶(hù)服務(wù)體系,實(shí)行差異化客戶(hù)管理(如根據(jù)客戶(hù)特點(diǎn),可將其分為① 內(nèi)在價(jià)值型客戶(hù)。② 外在價(jià)值型客戶(hù)。③ 戰(zhàn)略型價(jià)值客戶(hù)), 為客戶(hù)創(chuàng)造非同一般的價(jià)值,也是企業(yè)從中獲得長(zhǎng)久利潤(rùn)、需要引起關(guān)注的關(guān)鍵技術(shù)之一。
工程機(jī)械尤其是混凝土機(jī)械近年來(lái)獲得了迅猛發(fā)展,與此同時(shí),混凝土機(jī)械產(chǎn)品市場(chǎng)又有兩大特點(diǎn):一是市場(chǎng)需求發(fā)展大,產(chǎn)品使用周期短,兩三年后的回頭客相當(dāng)多;二是隨著社會(huì)改革的推進(jìn)和國(guó)家投資方向的轉(zhuǎn)移,客戶(hù)群體會(huì)有較大方面的變動(dòng)。如國(guó)有企業(yè)占主體時(shí),以國(guó)企為主要購(gòu)買(mǎi)力;而隨著商品租賃業(yè)發(fā)展,個(gè)體購(gòu)買(mǎi)又成為了主力;而大型建設(shè)施工購(gòu)買(mǎi)又回到了建設(shè)施工單位。由于市場(chǎng)的競(jìng)爭(zhēng),相同產(chǎn)品的制造廠家對(duì)客戶(hù)的爭(zhēng)奪往往相當(dāng)激烈,有時(shí)甚至到了白熱化的地步。
顯然,我們既要大力發(fā)展新客戶(hù),又要努力保留舊客戶(hù)。保留一個(gè)舊客戶(hù)要比爭(zhēng)取一個(gè)新客戶(hù)便宜的多。為改進(jìn)保留客戶(hù)的一種途徑就是客戶(hù)真正流失之前準(zhǔn)確預(yù)測(cè)并采取行動(dòng)挽留客戶(hù),而基于客戶(hù)關(guān)系管理的數(shù)據(jù)挖掘技術(shù)和方法是解決該問(wèn)題的途徑。一般說(shuō)來(lái),針對(duì)CRM中客戶(hù)獲得、客戶(hù)保留、客戶(hù)忠誠(chéng)和客戶(hù)贏利分析各個(gè)方面,客戶(hù)特性及客戶(hù)行為信息的分類(lèi)具有相當(dāng)重要的意義。最大程度的預(yù)測(cè)潛在的客戶(hù)流失是我們需要密切關(guān)注的。采用數(shù)據(jù)挖掘的分類(lèi)思路可以在制造業(yè)客戶(hù)關(guān)系管理中起到相當(dāng)重要的作用。
2.CRM軟件中常用數(shù)據(jù)挖掘方法
利用數(shù)據(jù)挖掘的分類(lèi)算法構(gòu)造CRM的分類(lèi)器,是數(shù)據(jù)挖掘技術(shù)在商業(yè)領(lǐng)域中的重要應(yīng)用之一。數(shù)據(jù)挖掘的中的聚類(lèi)方法和決策樹(shù)分類(lèi)算法是常見(jiàn)的,也是一種相對(duì)準(zhǔn)確、有效的分類(lèi)方法。
CRM相關(guān)技術(shù)的發(fā)展日新月異,它包括運(yùn)營(yíng)型(前臺(tái)),分析型(后臺(tái)),協(xié)作型(渠道)。這里尤其是分析型CRM的技術(shù)發(fā)展得最快,這也是很多CRM理想中的功能實(shí)現(xiàn)成為可能的關(guān)鍵。數(shù)據(jù)倉(cāng)庫(kù),數(shù)據(jù)挖掘和呼叫中心是三個(gè)其主要的技術(shù)組成。本文主要分析數(shù)據(jù)挖掘部分。
所謂數(shù)據(jù)挖掘是從大型的數(shù)據(jù)庫(kù)中提取隱藏的、有預(yù)測(cè)性的信息,它是能幫助企業(yè)從已有數(shù)據(jù)中提取到最先進(jìn)和流行的趨勢(shì)并為其提供效益。簡(jiǎn)言之,數(shù)據(jù)挖掘是應(yīng)用數(shù)據(jù)分析和運(yùn)算法則來(lái)探索數(shù)據(jù)模式并進(jìn)行科學(xué)地描述和預(yù)測(cè)。
常用的數(shù)據(jù)挖掘方法有如下幾種:
2.1 回歸預(yù)測(cè)
回歸預(yù)測(cè)是比較傳統(tǒng)的預(yù)測(cè)方法,它是根據(jù)歷史記錄分析得出總體趨勢(shì),并將這種趨勢(shì)用某種數(shù)學(xué)方程式來(lái)表示。利用這個(gè)方程式,就可以輸人未來(lái)的一個(gè)或多個(gè)變量計(jì)算出預(yù)測(cè)結(jié)果。如果方程式的變量是一次方的,那么就成為直線性回歸,如果是多次訪問(wèn)的,就成為區(qū)線性回歸。典型的客戶(hù)流失預(yù)測(cè)都可以采取回歸分析的方法。
2.2 決策樹(shù)
決策樹(shù)是一種類(lèi)似于枝丫形狀的二分制。數(shù)據(jù)分析和預(yù)測(cè)方法,主要適用于對(duì)數(shù)據(jù)進(jìn)行歸類(lèi)分割和預(yù)測(cè)。根據(jù)客戶(hù)特征,對(duì)客戶(hù)大市場(chǎng)進(jìn)行分割,從而得到相對(duì)較小的客戶(hù)群體。
2.3 聚類(lèi)和鄰點(diǎn)預(yù)測(cè)
聚類(lèi)和鄰點(diǎn)預(yù)測(cè)對(duì)于客戶(hù)關(guān)系管理來(lái)說(shuō)是有類(lèi)似的分析目的的。聚類(lèi)是指如何將一批數(shù)據(jù)按照相似特性歸類(lèi),使我們能對(duì)他們有一個(gè)形象的概括性理解;鄰點(diǎn)預(yù)測(cè)是在歸類(lèi)的基礎(chǔ)上對(duì)未來(lái)數(shù)據(jù)進(jìn)行預(yù)測(cè)。
2.4 規(guī)則導(dǎo)引
規(guī)則導(dǎo)引是從一個(gè)樣本數(shù)據(jù)庫(kù)中發(fā)現(xiàn)并歸納出數(shù)據(jù)行為模式,即用“如果A,那么B,否則就是C”,這樣的判斷語(yǔ)句來(lái)描述這種隱藏在數(shù)據(jù)倉(cāng)庫(kù)中的規(guī)律。數(shù)據(jù)挖掘技術(shù)中的規(guī)則導(dǎo)引就是要從大量的客戶(hù)數(shù)據(jù)中發(fā)掘出這些規(guī)則。
3.制造企業(yè)CRM數(shù)據(jù)挖掘綜述
在CRM系統(tǒng)中,最重要最有挑戰(zhàn)性的則是對(duì)流失客戶(hù)的預(yù)測(cè)。制造企業(yè)營(yíng)銷(xiāo)和市場(chǎng)部門(mén),根據(jù)購(gòu)買(mǎi)產(chǎn)品的客戶(hù)信息資料,通過(guò)數(shù)據(jù)挖掘方法,往往可以預(yù)測(cè)潛在的流失客戶(hù)。
客戶(hù)流失分析就是應(yīng)用數(shù)據(jù)挖掘技術(shù),預(yù)測(cè)哪些是潛在流失客戶(hù),同時(shí)評(píng)估出最有效的客戶(hù)保持方法。本文提出一套基于制造業(yè)CRM系統(tǒng)中預(yù)測(cè)客戶(hù)流失的方法的基本思路。
該方法一般分為三個(gè)步驟:第一,應(yīng)用軟件對(duì)數(shù)據(jù)進(jìn)行挖掘測(cè)試,其中包括統(tǒng)一的客戶(hù)資料,客戶(hù)屬性,購(gòu)買(mǎi)信息,模型參數(shù),模型等等。第二,應(yīng)用數(shù)據(jù)分析方法和所討論的數(shù)據(jù)挖掘技術(shù)對(duì)客戶(hù)流失前的行為分析進(jìn)行簡(jiǎn)化的知識(shí)發(fā)現(xiàn)。第三,應(yīng)用系統(tǒng)聚類(lèi)和決策樹(shù)ID3的方法對(duì)模型應(yīng)用的實(shí)驗(yàn)結(jié)果進(jìn)行過(guò)程分析。
常見(jiàn)的數(shù)據(jù)挖掘主要分為兩種:即探索性的數(shù)據(jù)挖掘和驗(yàn)證性的數(shù)據(jù)挖掘。其中探索性的數(shù)據(jù)挖掘中最常使用的就是聚類(lèi),而驗(yàn)證性數(shù)據(jù)挖掘的代表就是分類(lèi)。聚類(lèi)分析法是一種無(wú)監(jiān)督的自下而上的學(xué)習(xí)過(guò)程,主要目的是把沒(méi)有“標(biāo)記”的數(shù)據(jù)分為有意義的“組”(或者就叫聚類(lèi));而分類(lèi)是給定已知“標(biāo)記”的訓(xùn)練數(shù)據(jù),然后通過(guò)學(xué)習(xí)得到描述模式,然后運(yùn)用該模式對(duì)未來(lái)的數(shù)據(jù)進(jìn)行分類(lèi),是一種帶監(jiān)督的自上而下的學(xué)習(xí),如決策樹(shù)ID3法。由于這兩種類(lèi)別具有一定的典型性,都可以用于數(shù)據(jù)挖掘的客戶(hù)流失分析。
3.1數(shù)據(jù)源介紹
進(jìn)行數(shù)據(jù)分析首先必須從客戶(hù)的數(shù)據(jù)庫(kù)中間找到最能夠代表和刻畫(huà)客戶(hù)行為的屬性。針對(duì)2005一2006兩年中,某企業(yè)800個(gè)購(gòu)買(mǎi)某工程機(jī)械產(chǎn)品的客戶(hù)信息,從中了解到導(dǎo)致客戶(hù)流失的因素較多,但有共性的部分也有很多。因此,我們把客戶(hù)與本公司交易次數(shù)、公司屬性、公司資產(chǎn)規(guī)模、付款方式、公司所在地、產(chǎn)品用途作為統(tǒng)計(jì)信息中的主要屬性。
我們將所擁有的所有可能的客戶(hù)信息屬性變量轉(zhuǎn)換成0,1,2等屬性,其他數(shù)字變量不變,應(yīng)用2一檢驗(yàn),選除了某特定制造企業(yè)客戶(hù)流失的一般統(tǒng)計(jì)屬性。
3.2 系統(tǒng)聚類(lèi)實(shí)驗(yàn)分析
系統(tǒng)聚類(lèi)法實(shí)驗(yàn)的基本思想是:設(shè)有n個(gè)樣品,每個(gè)樣品測(cè)得m項(xiàng)指標(biāo)。然后用不同的數(shù)據(jù)表示客觀數(shù)據(jù)的定量屬性和定性屬性。當(dāng)定義或計(jì)算樣品間的距離(或相似系數(shù))和類(lèi)與類(lèi)之間的距離之后?梢詫個(gè)樣品各自自成一類(lèi),這時(shí)類(lèi)間的距離與樣品間的距離是等價(jià)的;然后將距離最近的兩類(lèi)合并,并計(jì)算新類(lèi)與其他的類(lèi)間距離,再按最小距離準(zhǔn)則并類(lèi)。這樣每次縮小一類(lèi),直到所有的樣品都并成一類(lèi)為止。這個(gè)過(guò)程再可以用譜系聚類(lèi)圖形象表達(dá)出來(lái)。
3.3 實(shí)驗(yàn)聚類(lèi)
根據(jù)特定產(chǎn)品、眾多客戶(hù)的統(tǒng)計(jì)信息中的主要屬性,按照上述系統(tǒng)聚類(lèi)實(shí)驗(yàn),得到我們所需要的信息。
基于上述個(gè)體行為數(shù)據(jù)進(jìn)行聚類(lèi)操作,在對(duì)未來(lái)行為的預(yù)測(cè)能力上,往往比其他類(lèi)型的數(shù)據(jù)效果更好、更精準(zhǔn)。
3.4 決策樹(shù)ID3法實(shí)驗(yàn)及分析
決策樹(shù)技術(shù)是用于分類(lèi)和預(yù)測(cè)的主要技術(shù),決策樹(shù)學(xué)習(xí)是以實(shí)例為基礎(chǔ)的歸納學(xué)習(xí)算法。著眼于從一組無(wú)次序、無(wú)規(guī)則的事例中推理出決策樹(shù)表示形式的分類(lèi)規(guī)則。它采用自頂向下的遞歸方式,在決策樹(shù)的內(nèi)部節(jié)點(diǎn)進(jìn)行屬性的比較,并根據(jù)不同屬性判斷從該節(jié)點(diǎn)向下的分支,在決策樹(shù)的葉節(jié)點(diǎn)得到結(jié)論。所以從根到葉節(jié)點(diǎn)就對(duì)應(yīng)著一條合取規(guī)則,整棵樹(shù)就對(duì)應(yīng)著一組析取表達(dá)式規(guī)則。
考慮一個(gè)任意的變量,它有兩個(gè)不同的值A(chǔ)和B。假設(shè)已知這個(gè)變量不同值的概率分配,將估測(cè)該概率分配的不純度。
情況1.如果P(A)=1和P(B)=0,那么知道這個(gè)變量的值一定為A,不存在不純度,因此已知變量結(jié)果值不會(huì)帶來(lái)任何的信息。
情況2.如果P(A)=P(B)=0.5,那么它的不純度明顯地高于P(A)=0.1和P(B)二0.9的情況。在這種情況下,已知變量的結(jié)果值就會(huì)攜帶信息。
不純度的最佳評(píng)估方法是平均信息量,也就是信息熵。定義如下:設(shè)S是s個(gè)樣本數(shù)據(jù)集合。假定類(lèi)標(biāo)號(hào)屬性具有m個(gè)不同值,定義m個(gè)不同類(lèi)C;(i=l,2,…,m)。設(shè)s:,是類(lèi)C中的樣本數(shù),對(duì)一個(gè)給定的樣本分類(lèi)所需的期望信息或者信息墑為:
其中P為任意樣本屬于Ci的概率,并用Si/S估計(jì)。信息增益:信息增益是指期望信息或者信息嫡的有效減少量(通常用“字節(jié)”衡量),根據(jù)它能夠確定在什么樣的層次上選擇什么樣的變量來(lái)分類(lèi)。假設(shè)存在兩個(gè)類(lèi)P和N,并且記錄集5中包括x個(gè)屬于類(lèi)P的記錄和y個(gè)屬于類(lèi)N的記錄。那么,用于確定記錄集5中某個(gè)記錄屬于哪個(gè)類(lèi)的所有信息量為:
信息增益可通過(guò)下式計(jì)算:
信息量:
信息增益:Gain(A)=Info(p,n)-E(A)
重復(fù)上述步驟,分別得到各個(gè)根節(jié)點(diǎn),同時(shí)計(jì)算相應(yīng)屬性的信息增益值。最后,根據(jù)公式計(jì)算結(jié)果得到制造企業(yè)是否需要對(duì)該潛在的流失客戶(hù)實(shí)施新的服務(wù)的決策樹(shù),如圖1所示。
3.5 實(shí)驗(yàn)規(guī)則引導(dǎo)結(jié)果及實(shí)驗(yàn)方法分析及評(píng)價(jià)
遍歷決策樹(shù),輸出葉結(jié)點(diǎn)類(lèi)屬性值,ID3通過(guò)不斷的循環(huán)處理,逐步求精決策樹(shù),直至找到一個(gè)完全正確的決策樹(shù)。用ID3算法構(gòu)造的決策樹(shù)是從頂向下歸納,最后形成了一組類(lèi)似IF……THEN的規(guī)則。其最原始的程序只是用來(lái)區(qū)分象棋中的走步,所以區(qū)分的類(lèi)別只有兩種,即真或假,其屬性值也是一些離散有限的值,F(xiàn)在ID3算法己發(fā)展到允許多于兩個(gè)類(lèi)別,而其屬性值可以是整數(shù)或?qū)崝?shù),這里僅僅采用了它最原始的原則,提供一條基本分析思路。這種算法利用了互信息(信息增益)的概念,算法的基礎(chǔ)理論清晰,使得算法較簡(jiǎn)單。該算法的計(jì)算時(shí)間是例子個(gè)數(shù)、特征個(gè)數(shù)、結(jié)點(diǎn)個(gè)數(shù)之積的線性函數(shù)。而且搜索空間是完全的假設(shè)空間,目標(biāo)函數(shù)必在搜索空間中,不存在無(wú)解的危險(xiǎn)。可以利用全部訓(xùn)練例的統(tǒng)計(jì)性質(zhì)進(jìn)行決策,從而抵抗噪音。
但用信息增益作為特征選擇量存在一個(gè)假設(shè),即訓(xùn)練例子集中的正、反例的比例應(yīng)與實(shí)際問(wèn)題領(lǐng)域里正反例比例相同。但一般實(shí)際情況并不能保證相同,因而計(jì)算訓(xùn)練集的信息增益就有偏差。ID3在建樹(shù)時(shí),每個(gè)節(jié)點(diǎn)僅含有一個(gè)特征,是一種單變?cè)乃惴,特征間的相關(guān)性強(qiáng)調(diào)不夠。雖然將多個(gè)特征用一棵樹(shù)連在一起,但聯(lián)系還是松散的。
正因?yàn)槿绱,我們(cè)诰唧w的客戶(hù)關(guān)系數(shù)據(jù)處理中,目前仍處于一種摸索的階段。但上述方法的探討,仍值得借鑒或進(jìn)一步深人研究。
4 結(jié)語(yǔ)
本文試圖將數(shù)據(jù)挖掘技術(shù)中有最代表性的系統(tǒng)聚類(lèi)分析法和決策樹(shù)ID3算法思路應(yīng)用于制造企業(yè)的客戶(hù)流失分析,為基于制造行業(yè)的CRM的客戶(hù)流失分析做一初步的探討。對(duì)于數(shù)據(jù)挖掘遇到的個(gè)體行為數(shù)據(jù),分別運(yùn)用兩種較有代表性的數(shù)據(jù)挖掘方法進(jìn)行具體實(shí)驗(yàn)和理論方法分析比較。嘗試應(yīng)用聚類(lèi)分析和決策樹(shù)這兩種有代表的數(shù)據(jù)挖掘方法融入到制造業(yè)客戶(hù)流失管理的信息處理中,為制造企業(yè)針對(duì)不同客戶(hù)群體提供個(gè)性化服務(wù)提供一個(gè)分析思路,為未來(lái)企業(yè)信息化競(jìng)爭(zhēng)創(chuàng)建一個(gè)良好的平臺(tái)。
CIO時(shí)代